Scaling of the average crossing number in equilateral random walks, knots and proteins

نویسندگان

  • A. Dobay
  • Y. Diao
  • Jacques Dubochet
  • A. Stasiak
چکیده

We compare here the scaling behaviour of the mean average crossing number 〈ACN〉 of equilateral random walks in linear and closed form with the corresponding scaling observed in natural protein trajectories. We have shown recently that the scaling of 〈ACN〉 of equilateral random walks of length n follows the relation 〈ACN〉 = 3 16 n ln n + bn and that a similar result holds for equilateral random polygons [13]. Furthermore, our earlier numerical studies indicated that when random polygons of length n are divided into individual knot types, the 〈ACN(K)〉 for each knot type K can be described by a function of the form 〈ACN(K)〉 = a(n− n0) ln(n− n0) + b(n− n0) + c where a, b and c are constants depending on K and n0 is the minimal number of segments required to form K [13]. Here we analyze in addition natural protein structures and observe that the relation 〈ACN〉 = 3 16 n ln n + bn also describes accurately the scaling of 〈ACN〉 of protein backbones.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy, ropelength, and other physical aspects of equilateral knots

Closed macromolecular chains may form physically knotted conformations whose relative occurrence and spatial measurements provide insight into their properties and the mechanisms acting upon them. Under the assumption of a degree of structural homogeneity, equilateral spatial polygons are a productive context within which to create mathematical models of these knots and to study their mathemati...

متن کامل

Predicting Optimal Lengths of Random Knots

In thermally fluctuating long linear polymeric chain in solution, the ends come from time to time into a direct contact or a close vicinity of each other. At such an instance, the chain can be regarded as a closed one and thus will form a knot or rather a virtual knot. Several earlier studies of random knotting demonstrated that simpler knots show their highest occurrence for shorter random wal...

متن کامل

Knots, Slipknots, and Ephemeral Knots in Random Walks and Equilateral Polygons

The probability that a random walk or polygon in the 3-space or in the simple cubic lattice contains a knot goes to one at the length goes to infinity. Here, we prove that this is also true for slipknots consisting of unknotted portions, called the slipknot, that contain a smaller knotted portion, called the ephemeral knot. As is the case with knots, we prove that any topological knot type occu...

متن کامل

The linking number and the writhe of uniform random walks and polygons in confined spaces

Random walks and polygons are used to model polymers. In this paper we consider the extension of writhe, self-linking number and linking number to open chains. We then study the average writhe, self-linking and linking number of random walks and polygons over the space of configurations as a function of their length. We show that the mean squared linking number, the mean squared writhe and the ...

متن کامل

Scaling behavior of random knots.

Using numerical simulations we investigate how overall dimensions of random knots scale with their length. We demonstrate that when closed non-self-avoiding random trajectories are divided into groups consisting of individual knot types, then each such group shows the scaling exponent of approximately 0.588 that is typical for self-avoiding walks. However, when all generated knots are grouped t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004